Generalized Ricci Solitons on Non-reductive Four-Dimensional Homogeneous Spaces

نویسندگان

چکیده

Abstract In the present paper, we consider non-reductive four-dimensional homogeneous spaces and classify generalized Ricci solitons on these spaces. We show that any space admits least in a soliton. Also, will prove have non-trivial Killing vector fields exclusive of types A1, A4 B2 are Einstein manifold admit solitons.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Generic Properties of Homogeneous Ricci Solitons

We discuss the geometry of homogeneous Ricci solitons. After showing the nonexistence of compact homogeneous and noncompact steady homogeneous solitons, we concentrate on the study of left invariant Ricci solitons. We show that, in the unimodular case, the Ricci soliton equation does not admit solutions in the set of left invariant vector fields. We prove that a left invariant soliton of gradie...

متن کامل

Linear Stability of Homogeneous Ricci Solitons

As a step toward understanding the analytic behavior of Type-III Ricci flow singularities, i.e. immortal solutions that exhibit |Rm | ≤ C/t curvature decay, we examine the linearization of an equivalent flow at fixed points discovered recently by Baird–Danielo and Lott: nongradient homogeneous expanding Ricci solitons on nilpotent or solvable Lie groups. For all explicitly known nonproduct exam...

متن کامل

Four-dimensional Ball-homogeneous and C-spaces

We prove that four-dimensional ball-homogeneous Einstein manifolds which are 2-stein or Hermitian are locally symmetric. Most of the results are extended to the class of four-dimensional C-spaces.

متن کامل

Direct Search Methods on Reductive Homogeneous Spaces

Direct search methods are mainly designed for use in problems with no equality constraints. However, there are many instances where the feasible set is of measure zero in the ambient space and no mesh point lies within it. There are methods for working with feasible sets that are (Riemannian) manifolds, but not all manifolds are created equal. In particular, reductive homogeneous spaces seem to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Mathematical Physics

سال: 2023

ISSN: ['1776-0852', '1402-9251']

DOI: https://doi.org/10.1007/s44198-023-00116-6